- Главная /
- Инфоблок /
- Аналитика, экспертные мнен... /
- Строительные материалы. Ст...
Строительные материалы. Строение и свойства.
Знание строения строительного материала необходимо для понимания его свойств и в конечном итоге для решения практического вопроса, где и как применить материал, чтобы получить наибольший технико-экономический эффект.
Строение материала изучают на трех уровнях: 1) макроструктура материала – строение, видимое невооруженным глазом; 2) микроструктура материала – строение видимое в оптический микроскоп; 3) внутреннее строение веществ, составляющих материал, на молекулярно-ионном уровне, изучаемом методами рентгено-структурного анализа, электронной микроскопии и т.п.
Макроструктура
Макроструктура твердотелых строительных материалов делится на следующие типы: конгломератная, ячеистая, мелкопористая, волокнистая, слоистая, рыхлозернистая (порошкообразная).
Искусственные конгломераты
Искусственные конгломераты – это обширная группа, объединяющая бетоны различного вида, ряд керамических и других материалов.
Ячеистая структура
Ячеистая структура характеризуется наличием макропор, свойственных газо– и пенобетонам, ячеистым пластмассам.
Мелкопористая структура
Мелкопористая структура свойственна, например, керамическим материалам, поризованным способами высокого водозатворения и введением выгорающих добавок.
Волокнистая структура
Волокнистая структура присуща древесине, стеклопластикам, изделиям из минеральной ваты и др. Ее особенностью является резкое различие прочности, теплопроводности и других свойств вдоль и поперек волокон.
Слоистая структура
Слоистая структура отчетливо выражена у рулонных, чистовых, плитных материалов, в частности у пластмасс со слоистым наполнителем (бумопласта, текстолита и др.).
Рыхлозернистые материалы
Рыхлозернистые материалы – это заполнители для бетона, зернистые и порошкообразные материалы для матичной теплоизоляции, засыпок и др.
Микроструктура веществ
Микроструктура веществ, составляющих материал, может быть кристаллическая и аморфная. Кристаллические и аморфные формы нередко являются лишь различными состояниями одного и того же вещества. Примером служит кристаллический кварц и различные аморфные формы кремнезёма. Кристаллическая форма всегда более устойчива. Чтобы вызвать химическое взаимодействие между кварцевым песком и известью, в технологии силикатного кирпича используют автоклавную обработку отформованного сырцового материала насыщенным водяным паром с температурой не менее 175 °C и давления 0,8 Мпа. Между тем трепел (аморфная форма диоксида кремния) вместе с известью после затворения водой образует гидросиликат кальция при нормальной температуре 15-25 °C. Аморфная форма вещества может перейти в более устойчивую кристаллическую форму.
Практическое значение для природных и искусственных материалов имеет явление полиморфизма – когда одно и то же вещество способно существовать в разнообразных кристаллических формах, называемых модификациями. Наблюдаются, например, полиморфные превращения кварца, сопровождающегося изменением объема.
Особенностью кристаллического вещества является определенная температура плавления (при постоянном давлении) и определенная геометрическая форма кристаллов каждой его модификации.
Свойства монокристаллов неодинаковы в разных направлениях. Это механическая прочность, теплопроводность, скорость растворения, электропроводность и др. Явление анизотропии является следствием особенностей внутреннего строения кристаллов.
В строительстве применяют поликристаллические каменные материалы, в которых разные кристаллы ориентированы беспорядочно. Подобные материалы рассматриваются как изотропные по своим строительно-техническим свойствам. Исключение составляют слоистые каменные материалы (гнейсы, сланцы и др.).
Внутреннее строение
Внутреннее строение веществ, составляющих материал, определяет механическую прочность, твердость тугоплавкость и другие важные свойства материала.
Кристаллические вещества, входящие в состав строительного материала, различают по характеру связи между частицами, образующими пространственную кристаллическую решетку. Она может быть образована: нейтральными атомами; ионами; целыми молекулами.
Ковалентная связь, образуется обычно электронной парой в кристаллах простых веществ (алмаз, графит) и в кристаллах некоторых соединений из двух элементов (кварц, карборунд, другие карбиды, нитриды). Такие материалы выделяются очень высокой механической прочностью и твердостью, они весьма тугоплавки.
Ионные связи образуются в кристаллах тех материалов, в которых связь имеет преобладающе ионных характер. Распространенные строительные материалы этого типа гипс и ангидрид имеют невысокую прочность и твердость, не водостойки.
В сложных кристаллах, часто встречающихся в строительных материалах (кальцит, полевые шпаты), осуществляются и ковалентная и ионная связи. У полевых шпатов сочетаются относительно высокие показатели прочности и твердости, хотя и уступающие кристаллам алмаза с чисто ковалентной связью.
Молекулярные кристаллические решетки и соответствующие им молекулярные связи образуются преимущественно в кристаллах тех веществ, в молекулах которых связи являются ковалентными. Кристалл этих веществ построен их целых молекул, которые удерживаются друг около друга сравнительно слабыми ван-дер-ваальсовыми силами межмолекулярного притяжения (как в кристаллах льда). При нагревании связи между молекулами легко разрушаются, поэтому вещества с молекулярными решетками обладают низкими температурами плавления.
Силикаты, занимающие особое место в строительных материалах, имеют сложную структуру, обусловившую их особенности. Так, волокнистые материалы (асбест) состоят из параллельных силикатных цепей, связанных между собой положительными ионами, расположенными между цепями. Ионные силы слабее ковалентных связей внутри каждой цепи, поэтому механические воздействия, недостаточные для разрыва цепей, разделяют такой материал на волокна. Пластинчатые минералы (слюда, каолинит) состоят из силикатных групп, связанных в плоские сетки.
Авторы: редакционная статья ТехСтройЭкспертизы
Техническая строительная экспертиза
Узнать стоимость и сроки online, а также по тел.: +7(495) 641-70-69; +7(499) 340-34-73; e-mail: manager@tse-expert.ru
Независимая техническая строительная экспертиза
Техническое обследование зданий и сооружений
Мониторинг технического состояния зданий, сооружений, строительных конструкций. Цели и задачи мониторинга.
Определение величины причиненного материального ущерба в результате некачественного выполнения проектных, строительно-монтажных, отделочных и ремонтных работ
Определение причин аварийности
Экспертиза проектной документации
Контроль качества строительства
Судебная экспертиза
Приемка выполненных работ
Определение величины причиненного материального ущерба в результате залива
Анализ смет
Защита деревянных конструкций от влажности и биологического разрушения